
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 11: Segmentation and Paging

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Midterm.

2. Virtual memory.

3. Segmentation.

4. Paging.

2

Agenda
1. Midterm.

2. Virtual memory.

3. Segmentation.

4. Paging.

3

Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00
pm EDT.

If you need an
accommodation, please
let us know soon.

4

Material for midterm:

1. All the lecture topics from
start until end of lecture 9 on
deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.

Midterm exam
Two sample exams posted on web page.
Solutions in lab section this Friday.
Review session Sat Jun 20 12:00 noon to 3:00 pm EDT.

5

Agenda
1. Midterm.

2. Virtual memory.

3. Segmentation.

4. Paging.

6

Address Spaces
Hardware interface:

All processes share physical memory

OS abstraction:

7

bound Process A

0

bound Process B

0

bound Process C

0

Dynamic address translation

Address independence

Virtual addresses are scoped to 1 process.

Protection

One process can’t refer to another’s address space.

Virtual memory

VA only needs to be in physical mem. when accessed.

Allows changing translations on the fly.
8

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

9

Many ways to implement the translator.
Tradeoffs
1. Flexibility (sharing, growth, virtual memory)
2. Size of data needed to support translation
3. Speed of translation

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

10

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

11

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Base and bounds
physical
memory

base +
bound

base

0

12

Load each process into a
contiguous region of physical
memory.

Prevent process from accessing
data outside its region.

Base register: starting physical
address.

Bound register: size of region.

bound
address
space

0

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

13

MMU translation()
{
if (virtual address > bound)

{
trap to the kernel;
(probably) kill the

process (core dump);
}

else
physical address = base +

virtual address;
}

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

14

Pros:
1. Fast.
2. Simple hardware support.

Cons:
1. No virtual memory.
2. External fragmentation.
3. Hard to selectively grow parts

of address space.
4. No controlled sharing.

Root cause: Each address space
must be contiguous in memory.

Dynamic address translation

15

Break the requirement that the process space be
contiguous.

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Segmentation

Divide address space into segments, regions of memory
that are:

1. Contiguous in physical memory.

2. Contiguous in virtual address space.

3. Variable size.

16

Segmentation
physical
memory

46ff

4000
code

2fff

2000

stack

4ff
0 data

virtual
memory

segment 3
fff

0

stack

virtual
memory

segment 1
4ff

0 data

virtual
memory

segment 0
6ff

0
code

17

Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address
2. Special register
3. Implicit to instruction opcode

18

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address
2. Special register
3. Implicit to instruction opcode

19

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Segmentation: Translation

Physical address for virtual address (3, 100)?
2100

Physical address for virtual address (0, ff)?
40ff

Physical address for virtual address (2, ff)?
Physical address for virtual address (1, 2000)?

20

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Valid vs. invalid addresses

Not all virtual addresses are valid.
Valid  address is part of virtual address space.
Invalid  virtual address is illegal to access.

Accessing invalid address causes trap to OS.
Reasons for virtual address being invalid?

Invalid segment number.
Offset within valid segment beyond bound.

21

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Protection

Different segments can have different protection.
Code is usually read only (allows fetch, load,...).
Stack and data are usually read/write (allows load, store,...).

Was this fine-grained protection possible in base and bounds?

What must be changed on a context switch?

22

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Segmentation

Parts of the address space can grow separately.
How would you grow a segment?
If there’s contiguous free space, can simply extend the bound.
Otherwise, must move it, perhaps compacting memory.

23

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Benefits of Segmentation
Easy to share part of address space.

24

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
3 2000 1000 stack segment

Segment # Base Bounds Description
0 4000 700 code segment
1 1000 300 data segment
3 500 1000 stack segment

Process 1

Process 2

Segmentation
Pros:
1. Can grow each segment independently.
2. Can share segments across address spaces.

Cons:
1. Every segment must be smaller than physical memory.
2. Segment allocation is hard.
3. External fragmentation.

Cause: Variable amount of contiguous memory.

25

27

Dynamic address translation

28

Break the requirement that the process space be
contiguous.

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Paging
Allocate phys. memory in fixed-size units (pages)

Any free physical page can store any virtual page

29

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging
Translation data is the page
table.

Virtual address is split into:

1. Virtual page # (high bits of
address, e.g., bits 31-12).

2. Offset (low bits of address,
e.g., bits 11-0, for 4 KB page
size).

30

Virtual page # Physical page #
0 105
1 15
2 283
3 invalid
... invalid
1048575 invalid

Function to translate VA to PA?

Why no column for bound?

31

Page Lookups

Phys page #

Page number Offset
Virtual Address

Page Table
Page number Offset
Physical Address

Physical Memory

Paging
Translating virtual
address to physical
address.

What must be changed
on a context switch?
Indirection via Page
Table Base Register.

32

MMU_translation()
{
if (virtual page is invalid)

trap to OS fault handler;
else

{
physical page # =

pageTable[virtual page #].physPageNum;
physical address =

concat(Physical page #, offset);
}

}

Paging
Each virtual page can
be in physical memory
or “paged out” to disk.

33

MMU_translation()
{
if (virtual page is invalid)

trap to OS fault handler;
else

{
physical page # =

pageTable[virtual page #].physPageNum;
physical address =

concat(Physical page #, offset);
}

}

How does processor
know that a virtual page
is not in physical
memory?

Paging
Each virtual page can
be in physical memory
or “paged out” to disk.

How does processor
know that a virtual page
is not in physical
memory?

Like segments, pages
can have different
protections (e.g., read,
write, execute).

34

MMU_translation()
{
if (virtual page is

invalid or non-resident or protected)
trap to OS fault handler;

else
{
physical page # =

pageTable[virtual page #].physPageNum;
physical address =

concat(Physical page #, offset);
}

}

Paging
Revised page table:

35

Virtual page # Physical page # Resident Protection
0 105 0 RX
1 15 1 R
2 283 1 RW
3 invalid
... invalid
1048575 invalid

Valid versus Resident
Valid virtual page is legal for process to access.
Resident virtual page is valid and in physical memory.
Error to access invalid page, but not to access non-resident
page.

Who makes a virtual page resident/non-resident?
Who makes a virtual page valid/invalid?
Why would a process want one of its virtual pages to be
invalid?

36

Picking Page Size
What happens if page size is really small?
What happens if page size is really big?

Typically a compromise, e.g., 4 KB or 8 KB.
Some architectures support multiple page sizes.

37

38

Growing Address Space

Stack

Code

Heap

Virtual page # Physical page #
0 105
1 15
2 283
3 invalid
... invalid
1048572 invalid
1048573 1078
1048574 48136
1048575 60

Why less space wastage than base and bounds?

Because not all the pages have to be in physical memory
unless they’re actually touched.

Paging
Pros
1. Simple memory allocation
2. Flexible sharing
3. Easy to grow address space

Cons
1. 32-bit virtual address, 4 KB pages, 4 byte PTEs
2. Page table size?

39

Page table size

32-bit address  2^32 unique addresses
4 KB page  (2^32)/4 KB = 2^20 virtual pages
4 bytes per page table entry  4 MB page table
25 processes  100 MB for page tables!

How to reduce page table overhead?

40

Multi-level Paging
Standard page table is a simple array
Multi-level paging generalizes this into a tree

Example: Two-level page table with 4KB pages
Index into level 1 page table: virtual address bits 31-22
Index into level 2 page table: virtual address bits 21-12
Page offset: bits 11-0

41

Multi-level Paging

How does this let translation data take less space?
42

level 1
page table 0 1 … n

virtual
address
bits 21-
12

physical
page #

0 10
1 15
2 20
3 2

level 2
page tables

virtual
address
bits 21-
12

physical
page #

0 30
1 4
2 8
3 3

43

44

Sparse Address Space

Stack

Code

Heap

Virtual page # Physical page #
0 105
1 15
2 283
3 invalid
... invalid
1048572 invalid
1048573 1078
1048574 48136
1048575 60

Sparse Address Space

45

Bits 21-12 Physical page #
0 105
1 15
2 283
3 invalid
... invalid

Bits 31-22 Physical address
0 0xfffff389
1 Invalid
2 Invalid
… Invalid
1021 Invalid
1022 Invalid
1023 0xffff7046

Bits 21-12 Physical page #
... invalid
1020 invalid
1021 1078
1022 48136
1023 60

Multi-level paging
How to share memory between address spaces?

What must be changed on a context switch?

Pros
Easy memory allocation
Flexible sharing
Space efficient for sparse address spaces

Cons
Two or more extra lookups per memory reference

46

Translation lookaside buffer

TLB caches virtual page # to PTE mapping
Cache hit  Skip all the translation steps
Cache miss  Get PTE, store in TLB, restart
instruction

Does TLB change what happens on a context switch?

47

End-to-end look at paging
New process  allocate new L1 page table

All entries in L1 page table invalid
As process makes virtual pages valid, allocate new L2
page tables and add entries
To serve load/store on a virtual page:

CPU looks up TLB to find PTE for virtual page #
If absent, lookup PTE in memory and load TLB

When process ends, deallocate L1 and L2 page tables

48

Page replacement

Not at all valid pages can be in phys memory.

How to handle loads/stores on non-resident pages?

49

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 11: Segmentation and Paging
	Agenda
	Agenda
	Midterm exam
	Midterm exam
	Agenda
	Address Spaces
	Dynamic address translation
	Dynamic address translation
	Dynamic address translation
	Dynamic address translation
	Base and bounds
	Base and bounds
	Base and bounds
	Dynamic address translation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation: Translation
	Valid vs. invalid addresses
	Protection
	Segmentation
	Benefits of Segmentation
	Segmentation
	Slide Number 27
	Dynamic address translation
	Paging
	Paging
	Page Lookups
	Paging
	Paging
	Paging
	Paging
	Valid versus Resident
	Picking Page Size
	Growing Address Space
	Paging
	Page table size
	Multi-level Paging
	Multi-level Paging
	Slide Number 43
	Sparse Address Space
	Sparse Address Space
	Multi-level paging
	Translation lookaside buffer
	End-to-end look at paging
	Page replacement

